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Abstract
We report on the wrenching of a metal-capped periodically corrugated polymer
bilayer when the bilayer is annealed at a temperature far above the glass
transition temperature of the polymer layer. Certain corrugation geometries
such as several micrometre line width of groove and ridge and step heights,
thicknesses of the metal film, and extents of reduction of the elastic modulus
of the polymer layer by increasing the annealing temperature give rise to
a wrenching pattern in the metal surface. This wrenching pattern was
characterized by the critical wrenching angle. The critical wrenching angle
could be theoretically determined by calculating the mechanical energy required
for the wrenching of the metal film and polymer layer in order to relax the
thermal compressive in-plane stress. An increase in the annealing temperature
incorporated with a decrease in the corrugation period yields a smaller critical
wrenching angle. For the critical wrenching angle larger than a certain value,
the wrenching wave pattern was directed by the wave interaction relationship
between the corrugation and the intrinsic buckling wave of the metal-capped
polymer bilayer.

1. Introduction

Surface pattern formation induced by morphological instability in thin films has attracted
a great deal of interest. Among the surface patterns, wrinkles given by the relaxation of
stress are frequently encountered [1–10]. In the case of the wrinkling of a metal-capped
polymer bilayer, the stress is generated due to a difference in the thermal expansion coefficients
(buckling) [3–5, 7, 8], and in the degree of reaction to the solvent vapour between the two
layers (swelling) [10]. To relieve the stress, wrinkles occur over the surface. These wrinkles
commonly show an isotropic wave pattern without directional order although they have a
certain dominant wavelength associated with them. Without external confinements, the wrinkle
is the intrinsic pattern on this point. In particular, it was reported that the bilayer consisting of
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a thin metal film with a thickness in the sub-100 nm range deposited on the structured polymer
layer showed an isotropic surface wave pattern that has a wavelength of the order of several
micrometres [5, 9].

In the event of the wrinkling of a structured bilayer, a recent study [7] reported that
the isotropic wave pattern could result in anisotropic patterns due to the wave interaction
between the intrinsic wave and the periodic corrugation when the bilayer is annealed at a
temperature above the glass transition temperature of the polymer layer (Tg). Another kind
of wrinkle (deformation) pattern can be caused by the drastic decrease in the elastic modulus
of the viscoelastic polymer layer given by further increase in the annealing temperature.
The wrinkling pattern with relatively high annealing temperature is not only an interesting
phenomenon but also a crucial factor from the practical point of view, since controlling the
structural instability in polymer and metal thin films is important within the framework of
thin-film-related industry. To control the wrinkle pattern in the structured layers, a systematic
adjustment based on a theoretical prediction should be addressed. These academic interests
incorporated with industrial importance led us to investigate the abnormal wrinkling pattern
occurring in the metal-capped structured polymer bilayer.

In this study, the formation of wrenching in a thin metal film on a periodically corrugated
polymer layer when the annealing temperature is elevated well above Tg was reported, with the
supporting theoretical analysis based on a mathematical model. By comparing the theoretical
analysis with experimental results, we found critical adjustable factors for the wrenching
pattern. These factors are metal film thickness, the annealing temperature-dependent elastic
modulus of a polymer layer, and corrugation geometries. These critical factors determined
the criterion classifying three kinds of deformation patterns in the bilayer: wrenching, wave-
interacted wrenching, and no wrinkling. The wrenching pattern was observed to have distorted
wave patterns, and can be characterized by the critical wrenching angle, θC. The theoretical
prediction of θC showed a good agreement with the experimental result.

2. Experimental details

In order to fabricate the bilayer consisting of a thin metal film on a structured polymer,
polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) moulds with corrugation patterns
which have periodic rectangular line-and-space patterns were employed [11]. The corrugated
polymer layers were formed by spin-coating polystyrene (PS, Mw = 45 000 − 70 000 g mol−1,
Tg = 105 ◦C, Mw/Mn = 1.08, Polymer Source Inc.) solutions in toluene to thicknesses
ranging from 400 to 700 nm on a cleaned flat Si(001) substrate covered with a native oxide
layer, and then applying the capillary force lithography technique [11] to the coated PS film for
5 h. A thin Al film with typical thickness of 60–90 nm was deposited onto the corrugated PS
layer using thermal evaporation. The representative geometry and coordinates of the corrugated
bilayer are briefly illustrated in figure 1. The as-obtained bilayer was annealed isothermally in
an oven, typically at temperatures ranging from 150 to 170 ◦C for 3–7 h. The surface patterns
were examined by atomic force microscopy (AFM, Digital Instruments, Dimension 3100) in
the contact mode.

3. Mathematical model and discussions

In the absence of corrugation, the bilayer showed isotropic wrinkles having an associated
dominant wavelength, which can be predicted by in an a priori manner [5, 7]. In the corrugated
bilayer (refer to figure 1), the surface deformation pattern is associated with θC. AFM images
shown in figures 2(a) and (b) demonstrate the typical wrenching pattern in the corrugated
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Figure 1. Coordinates and geometry of metal-capped periodically corrugated polymer bilayer.

bilayer. This pattern was observed in the case of a ridge to groove depth (step height), �h, of
170 nm and a corrugation period, L, of 1.5 μm, after annealing the corrugated bilayer at 170 ◦C
for 5 h. A cross-sectional line in the AFM image indicates that the wrenching pattern has a
wave-like morphology that has a dominant wavelength and propagating direction which can be
determined by θC. As indicated in the inset of figure 2(b), θC can be determined from the power
spectra (not shown) of the FFT image that shows the maximum diagonal intensity. Intuitively,
one can suppose that θC is determined by the geometries and the mechanical properties of
the materials of the structured bilayer. In order to determine why the wrenching pattern has
a certain value of θC under certain conditions involving corrugation geometry, metal film
thickness, and annealing temperature, a geometric model was adapted as was illustrated in
figure 3.

3.1. Mathematical model

In order to understand the nature of formation of the wrenching pattern, we considered the
mechanical aspect of the deformation. The mechanical deformation is mainly due to the thermal
strain before the deformation of the bilayer. The thermal strain leads to the equibiaxial in-
plane strain and the corresponding compressive stress, which are uniformly distributed over the
system, σ0. σ0 can be written as [12]

σ0 = Em

(1 − σm)

∫ T

T0

�αdT .

where σm and Em are the Poisson’s ratio and the Young’s modulus of the metal film, �α

is the difference in the thermal expansion coefficients between metal and polymer, T is the
temperature to which the bilayer is heated (above Tg), and T0 is the stress-free temperature
(initial temperature). The polymer used in this study has a relatively higher molecular weight
(PS of Mw = 4.5 × 104–7 × 104) than that of the dewetting of low molecular weight polymer
thin films. Therefore, the polymer layer can be considered to have an elastic property. This
consideration is based on the assumption that the polymer layer is sufficiently strongly confined
between the substrate and the metal film not to be a simple fluid, although it is annealed far
above Tg. Also, the annealing temperature was in the rubbery plateau in which the elastic
modulus of PS is of the order of MPa. Therefore we could assume that the PS employed in
our experiment is in the viscoelastic state. Based on this assumption, the deformation energy
of the polymer ridge was calculated. The polymer ridge (dark grey region in figure 3) can
be modelled as a beam. The bending energy of the polymer beam due to the wrenching can
be quantified by the radius of curvature of the wrenched region [13]. In order to calculate
the radius of curvature, we assumed that the wrenched region can be represented by a single
curvature. For the single curvature, a parabolic profile was assumed instead of a circular profile
since there is an infinite number of circular profiles that can be contacted with the side of the
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Figure 2. (a) Three-dimensional (3D) AFM images of the wrenching pattern in a bilayer of 80 nm
thick Al on 640 nm thick PS, combined with the corrugation period, L , of 1.5 μm and the distance
between the ridge and the groove (step height), �h, of 170 nm, after annealing at 170 ◦C for 5 h.
The right image is an expanded 3D AFM image of the wrenching pattern. (b) Top view AFM image
of the wrenching pattern (for the dimension of 50 × 50 μm2). The right image is the FFT image
showing a distinct diagonal intensity that indicates the existence of the critical wrenching angle, θC.
(c) A cross-sectional profile of the wrenching pattern (white solid line).

bent ridge (refer to figure 3(b)). This assumption is not adequate for the very small value of the
wrenching angle near zero, since the radius of curvature of the inscribed curve, R, is infinite
when there is no wrenching, while R has a finite value for the parabolic curve. The curvature
can be expressed by using an inscribed curve having a tangential angle of θ/2 associated with
it, which comes into contact with the bent region of the corrugated structure. The symmetry
axis of this curve (bisectrix) is shown in the form of the dash–dot line depicted in figure 3(a)
(expressed as the ξ axis). Then, R can be calculated by considering the profile of the inscribed
curve, ξ = {2χ2 + L(1 − cos θ)}/4 cos θ

2 , such that 1
R = ∂2ξ

∂χ2 = 1/L cos θ
2 , where θ is the

wrenching angle, and ξ and χ are virtual coordinates perpendicular and parallel to the bisectrix
of θ , respectively (refer to figure 3(b)).
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Figure 3. (a) Geometric model for the wrenching pattern in the corrugated bilayer. (b) Schematic
illustration showing the radius of curvature of the wrenched region, R. (c) Schematic illustration
showing the shift of the metal plate on the ridge of the corrugated polymer layer.

Stress-induced deformation of the corrugated bilayer accompanies an excessive amount of
free energy. This is the summation of the energy that is required to bend a ridge (in the form of
a beam) of the corrugated polymer layer and metal layer (in the form of a plate), and the shear
energy due to the strains resulting from the shift in the top of the metal layer.

Firstly, the free energy that is required to bend a ridge of the corrugated polymer with a
radius of curvature R per unit area of the deformed ridge, FP, is given by [13]

FP = 2 ×
[

Ep I

2

∫ M

0

(
1

R
− 1

R0

)2

dx

]/ (
L M

cos θ

)

= 2 × Ep

2R2
× I

/ (
L

cos θ

)
= Ep�h cos θ

12 cos2 θ
2

[
cos2 θ +

(
�h

L

)2

(1 − cos2 θ)

]
,

(1)

where a factor of two in the first and second lines of equation (1) was introduced to consider
the double wrenching of the ridge of the corrugated polymer, I is the moment of inertia of
the cross-section of the polymer bean perpendicular to the surface of the bilayer, Ep is the
Young’s modulus of the polymer layer, M is the length of the shifted part of the ridge (refer to
figure 3(c)), and R0 is the radius of curvature at any point of the undeformed ridge, which is
equal to zero in our case.

Secondly, deformation in the metal plate should be considered. One of the deformations
in the metal plate corresponds to the bending of two metal plates on the side of the ridge of the
corrugated polymer; the free energy per unit area of the deformed ridge, Fmb, in conjunction
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with
(

∂2ξ

∂χ2

)2
, is given by [13]

Fmb = 4 ×
∫

FmbV dV = 4 ×
∫ tm

2

− tm
2

Emz2

2(1 − σ 2
m)

dz
∫ ∫ [(

∂2ξ

∂x2
+ ∂2ξ

∂y2

)2

+ 2(1 − σm)

((
∂2ξ

∂xy

)2

− ∂2ξ

∂x2

∂2ξ

∂y2

)]
dx dy

= 4 × Emt3
m

24(1 − σ 2
m)

∫ ∫ (
∂2ξ

∂χ2

)2

dx dy

/ (
L M

cos θ

)
= Emt3

m

6(1 − σ 2
m)L2 cos2 θ

2

, (2)

where FmbV is the free energy of the deformed ridge per unit volume of the deformed ridge,
a factor of four in the middle term in equation (2) was introduced to consider the four times
bending of the metal plate on the side of the corrugated polymer ridge, and tm is the thickness
of the metal layer. The other deformation is due to the strain in the metal plate on the top of the
ridge of the corrugated polymer, which corresponds to shear strain in the y direction, Uyy . Uyy

can be obtained by assembly of the shift of an infinitesimal number of metal plates on the top
of the corrugated polymer. As is apparent from figure 3(c), the shear strain generated by the
shift of the kth metal plate unit can be expressed as Uyy,k = 2k

n , where n is the (infinitesimal)
number of the plates in the shifted part (refer to figure 3(c)). Each shear strain in each metal
plate contributes to the free energy required to shift the metal plate on the top of the corrugated
polymer, and the resulting free energy per unit area of the deformed ridge, Fms, can be written
as follows [13]:

Fms = Em(1 − σm)

2(1 + σm)(1 − 2σm)
lim

n→∞

n∑
k=1

[Uyy,k]2 tm
n

= 2tm Em(1 − σm)

3(1 + σm)(1 − 2σm)
. (3)

Then, the total free energy required to deform the bilayer (with fixed metal film thickness) per
unit area of the deformed ridge, FT, can be formulated using the forms of FP, Fmb, and Fms, as
follows:

FT

Emtm
= FP + Fmb + Fms

Emtm
= Ep�h cos θ

12Emtm cos2 θ
2

[
cos2 θ +

(
�h

L

)2

(1 − cos2 θ)

]

+ t2
m

6(1 − σ 2
m)L2 cos2 θ

2

+ 2(1 − σm)

3(1 + σm)(1 − 2σm)
. (4)

The minimization of FT/Emtm with respect to θ gives rise to the critical wrenching angle, θC,
which is responsible for the critical wrenching pattern with approximations of (�h/L)2 � 1
and σm = 1/3 as follows:

∂
(

FT
Emtm

)

∂θ

∣∣∣∣∣∣
θ=θC

≈ sin θC
2

12 cos3 θC
2

(
Ep

Em

) (
�h

tm

) [
C − cos2 θC

(
4 cos2 θC

2
+ 1

)]
= 0,

C = 9t3
m

4L2�h

(
Em

Ep

)
. (5)

3.2. Comparison between the theoretical prediction and experimental results

3.2.1. Calculation of the critical wrenching angle θC. We next discuss the dependence of the
deformation pattern on the value of the dimensionless parameter obtained from equation (5),
C . Firstly, in the case for which C is larger than five, which is the maximum value of
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Figure 4. Relationship between dimensionless parameter, C , and θC. The inset is for the
determination of the criterion for the deformation in the corrugated bilayer that is dependent on
the value of C .

cos2 θC
(
4 cos2 θC

2 + 1
)

in equation (5), the free energy of the bilayer is minimized when
θC = 0◦, as shown in the inset of figure 4. Zero value of θC indicates that the compressive stress
due to the thermal strain would be relaxed through heat dissipation instead of deformation such
as wave or wrenching patterns in the bilayer. Secondly, in the case of the value of C smaller
than five, θC can be divided into two forms. The first form of θC corresponds to the value of C
between one and five, and it can be expressed as follows:

θC = 2 cos−1

[(
S + T + 1

4

)1/2
]

,

S = {2C − 1 + [4C(C − 1)]1/2}1/3

4
, T = {2C − 1 − [4C(C − 1)]1/2}1/3

4
.

(6)

The deformation pattern associated with this form of θC is a typical wrenching pattern with θC

ranging from 0◦ to 60◦ (θC = 60◦ when C = 1 from equation (5)), as shown in figure 2. The
second form of θC corresponds to the value of C smaller than unity, and it can be written as
follows:

θC = 2 cos−1

{[
1

2
cos

(
φ

3

)
+ 1

4

] 1
2

}
, φ = cos−1(2C − 1). (7)

These three kinds of θC determined by the range of C , representing three types of the
deformation of the bilayer respectively, are briefly described in the inset of figure 4. As shown
in figure 4, an increase in C gives rise to a decrease in θC. An increase in C is attributed to the
smaller L and �h, the larger tm, and the larger Em/Ep, and leads to more parallel wrenching of
the bilayer with the corrugation direction. In other words, smaller geometries of the structured
bilayer with the thicker metal film lead to a wrenching pattern which is more difficult to wrench,
and therefore give rise to a less wrenched bilayer.

The fact that a larger value of Em/Ep yields a smaller value of θC means that the less
rigid the polymer ridge (the smaller Ep), the less wrenched the bilayer. Ep increases with
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decreasing annealing temperature according to the William–Landel–Ferry equation with a
constant timescale, ln Ep

Ep,0
= −C1(T −T0)

C2+(T −T0)
, where C1 and C2 are constants and Ep,0 is the

Young’s modulus of the polymer layer at the reference temperature, T0 (Ep,0 = 3.2 GPa
at T0 = 100 ◦C) [14]. Experimentally, the observed values of θC were 44.3◦ and 33.0◦
for the annealing temperature 160 and 170 ◦C, respectively, for the system being considered
(tm = 80 nm, L = 1.5 μm, �h = 170 nm, Em = 70 GPa). Combining these experimental
results with equation (6) gives the values of Ep of 97.60 MPa at 160 ◦C and 62.88 MPa at
170 ◦C, which in turn provide us with the values of 16.09 and 216.7 for C1 and C2, respectively.
The value of C1 is matched with the standard value of 12.7 for C1; however, that of C2 is about
four times larger than the standard value of 49.8 for C2 [14]. Additionally, the calculated values
of Ep at 160 and 170 ◦C exceed the standard values of Ep by one order of magnitude [14]. The
differences in the value of C2 and in the order of Ep can be caused by errors in the estimation
of the elastic modulus of the metal film, critical wrenching angles, geometry of the corrugation
of the bilayer etc. Despite these differences in C2 and Ep, one can find that the proposed
mathematical model to predict the critical wrenching angle is enough to secure the validity of
the theoretical analysis and know that the polymer layer being considered here is viscoelastic,
and the temperature dependent elastic modulus of the polymer layer is the critical variable to
determine θC.

Because there will exist no wave or wrenching pattern in the bilayer when C > 5, one
can control the width of the ridge to be smaller than the critical ridge width, LC, for constant
tm, �h, and annealing temperature so as to prevent formation of wrenching or wave patterns.
To examine this supposition, experimental results were analysed. When L is smaller than
calculated values of LC of 986 nm and 1.23 μm for the bilayer annealed at 160 and 170 ◦C,
respectively, there should be no wave or wrenching patterns. Indeed, a wrenching pattern was
observed at 160 ◦C while no wave or wrenching patterns were observed at 170 ◦C for the bilayer
with a value of L of 1 μm. In the case of the bilayer annealed at 170 ◦C, the propagation of
the intrinsic buckling wave is inhibited, and this inhibition resulted in a flat metal surface on
the corrugated polymer layer (results not shown). The relaxation of the resulting stress in the
bilayer would be accomplished by the damped wave in the wrinkling, which is mainly attributed
to the absorption of mechanical energy of the buckling wave in the viscoelastic polymer layer.
For the annealing temperature of 160 ◦C, formation of no wave or wrenching patterns was not
confirmed, since we could not prepare the corrugation with width smaller than 986 nm.

Figure 5(a) shows the comparisons between the theoretical predictions and experimental
results for θC as a function of L, in which annealing temperature was varied from 160 to 170 ◦C.
Good agreement is seen between the predictions and the experimental data. Errors due to the
standard deviation given by averaging the experimental data based on the AFM image taken at
different parts of each sample are estimated about 5%. Using the fact that the predicted value of
θC is matched well the experimental value, the wrenching wavelength can also be determined.
For example, in the case of the corrugated bilayer with an L value of 1.5 μm annealed at
170 ◦C (θC = 33.0◦), the wrenching wavelength was 3.61 μm, which was well matched with
the predicted value of 2L/ cos θC = 3.58 μm.

Interestingly, the difference between the predicted and the experimental values of θC shows
a gradual increase when θC is larger than 60◦ (or when C is smaller than (1)). Additionally,
we found that the experimentally observed wavelength of the wrenching pattern was much
smaller than the predicted value when θC is larger than 60◦. For instance, the experimentally
determined wavelength was 5.58 μm, which was much smaller than the predicted value of
2L/ cos θC = 50.16 μm, in the case of the wrenching pattern in the bilayer with an L value
of 5 μm, �h of 170 nm, and tm of 80 nm annealed at 160 ◦C for 5 h (θC = 78.5◦). These
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Figure 5. (a) Comparisons between the theoretical predictions and experimental data of θC in
the Al- (80 nm thick) capped corrugated PS (�h of 170 nm) annealed at different temperatures.
Symbols are used for experimental data, whereby open symbols are for the corrugated bilayer
annealed at 160 ◦C and dark symbols are for 170 ◦C. Error bars of each symbol in the measured
data indicate standard deviations given by averaging the experimental data based on the AFM image
taken at different parts of each sample. (b) Representative AFM images for the wave-interacted
wrenching patterns of Al- (80 nm thick) capped corrugated PS (�h of 170 nm) combined with
corrugation period, L , of 5 μm in conjunction with θC of 78.5◦ after annealing at 160 ◦C for 5 h.
Left is 3D and right is a magnified top view image.

differences between wrenching patterns in the range of C (smaller or greater than (1)) can be
explained using the concept of the wave interaction during the process of buckling [7].

3.2.2. Wave-interacted wrenching pattern when θC > 60◦. When θC is larger than the
critical wrenching angle, 60◦ for C = 1, the deformation wave patterns show a wave-interacted
wrenching pattern rather than the typical wrenching pattern shown in figure 2. The critical angle
60◦ is mathematically determined independent of the corrugation geometry, film thickness, and
film elasticity by equating θC obtained from equations (6) and (7). If the ordering is due to
the confinement afforded by the periodic corrugation in the bilayer, it should result from the
interaction between the intrinsic wave and the corrugation period [7]. The intrinsic wave and
guided wave are able to propagate between two parallel ridge walls. Therefore, they can be
quantified as follows using the propagating wavefronts, since the corrugated surface can be
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considered as a stationary wave in conjunction with the corrugation wavenumber, kc [7]:

ζi = εi cos(kix − ωt) for the intrinsic wave

ζw = εw cos(kcy) exp[i(kx x − ωt)] between two walls,
(8)

where εi is the amplitude of the intrinsic wave, εw is that of the guided wave, and ω is the
frequency of the propagating intrinsic wave. ki is the wavenumber of the intrinsic buckling wave
and kx is the resulting wavevector of the undulation on the groove of the metal surface on the
corrugated polymer layer due to the interaction between the intrinsic wave and the corrugation
period. It is well known that a surface wave satisfies the following wave equation [7]:

∇2ζ j − 1

υ2

∂2ζ j

∂ t2
= 0, j = i, w, υ = ω

k
, (9)

where υ is the velocity of the propagating intrinsic wave. It is reasonable to suppose that υ is an
inherent property that is independent of the surface geometry, since υ is a constant, irrespective
of the wavefunction, ζ j . Then, the wavenumber of the wrenching pattern that is aligned along
the x direction, kx , can be determined by means of the following wave interaction relation
between ki and kx2, which is obtained from equations (8) and (9) [7]:

k2
x = k2

i − k2
c , kc = (2n + 1)π

L
, n = 0, 1, 2, · · · (10)

where ki is the wavenumber of the intrinsic buckling wave and n is the harmonic mode
number. Based on the above wave interaction relation, in the case of buckling with the isotropic
wavelength, λi, of 3.67 μm, the predicted wrenching wavelength for the value of L of 5 μm
is 5.40 μm. This wavelength is matched well with the experimental result of 5.58 μm, while
the predicted wrenching wavelength without the consideration of the wave-interaction relation,
50.16 μm, exceeds the experimental value by one order of magnitude. However, it is not known
why the wavelength is governed by the wave interaction (for the relatively lower annealing
temperature) while θC of the wrenching pattern in the bilayer is determined by the mechanical
model presented herein (for the relatively higher annealing temperature) when C < 1.

4. Summary

In summary, metal-capped rectangular-shaped corrugated polymer bilayers show a wrenching
pattern when the bilayer is annealed at a temperature far above the glass transition temperature
of the polymer. In contrast to the wave-interacted buckling patterns which are observed in
the bilayer annealed at relatively low temperatures, the higher annealing temperature causes a
decrease in elastic modulus of the polymer layer, which induces wrenching with a diagonally
directed wave pattern. The wrenching pattern was characterized by the critical wrenching
angle. It was experimentally and theoretically demonstrated that smaller dimensions of the
corrugation and elastic modulus of the polymer layer give rise to a smaller critical wrenching
angle. This means that the deformation of the bilayer to consist of wrenching is aligned more
parallel with the corrugation direction. These factors with metal film thickness and step height
of the corrugation together constitute the dimensionless parameter, C , which determines which
of the three types of deformation patterns will occur, namely no wave patterns (5 < C),
wrenching patterns (1 < C < 5), or the wave-interacted wrenching patterns (0 < C < 1).
The theoretical prediction based on a mathematical modelling showed a good agreement with
the experimental results. This indicates that the wrenching and wave-interacted patterns in
the bilayer can be systematically controlled by adjustment of the corrugation geometry and
the annealing temperature-dependent elasticity of materials constituting the bilayer. The
experimental and theoretical results presented here would give a substantial benefit to those
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who want to control the surface wrinkling in the multi-layered thin films used in different kinds
of thin film technologies involving the semiconductor process using multi-layered films.
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